skip to main content


Search for: All records

Creators/Authors contains: "Abdilla, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains.

     
    more » « less
  2. Abstract

    Polymer blending is a cost‐effective way to control the properties of soft materials, but the propensity for blends to macrophase separate motivates the development of efficient compatibilization strategies. Across this broad area, compatibilization is particularly important for polysiloxanes, which exhibit strong repulsive interactions with most organic polymers. This review analyzes state‐of‐the‐art polysiloxane compatibilization strategies for silicone–organic polymer blends. Emphasis is placed on chemical innovation in the design of compatibilization agents that may expedite the commercialization of new silicone–organic materials. We anticipate that hybrid silicone blends will continue to play an important role in fundamental and applied materials science across industry and academia.

     
    more » « less
  3. ABSTRACT

    The synthesis and systematic comparison of a comprehensive library of well‐defined polymer architectures based on poly(acrylic acid) is reported. Through the development of new synthetic methodologies, linear, single branched, precision‐branched comb, and star polymers were prepared and their performance as dispersants was evaluated. The ability to accurately control chain lengths and branch points allows the subtle interplay between structure and dispersant performance to be defined and affords critical insights into the design of improved polymeric additives for coating formulations. The general industrial relevance of ionic polymers and branched macromolecular architectures supports these design rules for a wide range of other applications and materials, including as additives for personal care products and in water treatment. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 716–725

     
    more » « less